Infomap是一种流行的方法,用于检测网络中节点的密度连接的“社区”。要检测此类社区,它建立在标准类型的马尔可夫链和信息理论中的想法。通过在网络上传播的疾病动态的动机,其节点可能具有异质疾病脱模速率,我们将Infomap扩展到吸收随机散步。为此,我们使用吸收缩放的图形,其中边缘权重根据吸收率缩放,以及马尔可夫时间扫描。我们的Infomap的一个扩展之一会聚到Infomap的标准版本,其中吸收率接近$ 0 $。我们发现,使用我们的Infomap扩展检测的社区结构可以从社区结构中显着不同,即一个使用不考虑节点吸收率的方法检测。此外,我们表明,局部动态引起的社区结构可以对环形格网络上的敏感感染恢复(SIR)动力学产生重要意义。例如,我们发现在适度数量的节点具有大的节点吸收率时,爆发持续时间最大化的情况。我们还使用我们的Infomap扩展来研究性接触网络中的社区结构。我们认为社区结构,与网络中无家可归者的不同吸收率相对应,以及对网络上的梅毒动力学的相关影响。我们观察到,当无家可归者人口中的治疗率低于其他人群时,当治疗率较低时,最终爆发规模可能会比其他人口相同。
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Predictive simulations of the shock-to-detonation transition (SDT) in heterogeneous energetic materials (EM) are vital to the design and control of their energy release and sensitivity. Due to the complexity of the thermo-mechanics of EM during the SDT, both macro-scale response and sub-grid mesoscale energy localization must be captured accurately. This work proposes an efficient and accurate multiscale framework for SDT simulations of EM. We employ deep learning to model the mesoscale energy localization of shock-initiated EM microstructures upon which prediction results are used to supply reaction progress rate information to the macroscale SDT simulation. The proposed multiscale modeling framework is divided into two stages. First, a physics-aware recurrent convolutional neural network (PARC) is used to model the mesoscale energy localization of shock-initiated heterogeneous EM microstructures. PARC is trained using direct numerical simulations (DNS) of hotspot ignition and growth within microstructures of pressed HMX material subjected to different input shock strengths. After training, PARC is employed to supply hotspot ignition and growth rates for macroscale SDT simulations. We show that PARC can play the role of a surrogate model in a multiscale simulation framework, while drastically reducing the computation cost and providing improved representations of the sub-grid physics. The proposed multiscale modeling approach will provide a new tool for material scientists in designing high-performance and safer energetic materials.
translated by 谷歌翻译
COVID-19大流行已经暴露了全球医疗服务的脆弱性,增加了开发新颖的工具来提供快速且具有成本效益的筛查和诊断的需求。临床报告表明,Covid-19感染可能导致心脏损伤,心电图(ECG)可以作为Covid-19的诊断生物标志物。这项研究旨在利用ECG信号自动检测COVID-19。我们提出了一种从ECG纸记录中提取ECG信号的新方法,然后将其送入一维卷积神经网络(1D-CNN)中,以学习和诊断疾病。为了评估数字信号的质量,标记了基于纸张的ECG图像中的R峰。之后,将从每个图像计算的RR间隔与相应数字化信号的RR间隔进行比较。 COVID-19 ECG图像数据集上的实验表明,提出的数字化方法能够正确捕获原始信号,平均绝对误差为28.11 ms。我们提出的1D-CNN模型在数字化的心电图信号上进行了训练,允许准确识别患有COVID-19和其他受试者的个体,分类精度为98.42%,95.63%和98.50%,用于分类COVID-19 vs.正常,与正常人分类, COVID-19与异常心跳和Covid-19和其他类别分别与其他阶级。此外,提出的方法还为多分类任务实现了高级的性能。我们的发现表明,经过数字化的心电图信号训练的深度学习系统可以作为诊断Covid-19的潜在工具。
translated by 谷歌翻译
这项研究的重点是在分析二维肺X射线图像中的特定人工智能子场的应用,以辅助医学诊断普通肺炎。卷积神经网络算法是在基于Python编码的基于烧瓶的Web应用程序中实现的,该应用程序可以分析X射线图像以检测普通肺炎。由于卷积神经网络算法依靠机器学习来识别和检测模式,因此实施了一种称为转移学习的技术来训练神经网络,以识别和检测数据集中的模式。开源肺X射线图像被用作训练数据,以创建一个知识库,该知识库是Web应用程序的核心元素,实验设计采用了5次验证性测试来验证Web应用程序。 5次验证性测试的结果显示,每次试验的诊断精度百分比,一般诊断精度百分比和一般诊断错误百分比的计算,而混淆矩阵进一步显示了标签和Web应用程序相应诊断结果之间的关系。每个测试图像。开发的Web应用程序可以由医生可以在A.I.辅助诊断普通肺炎的诊断中以及计算机科学和生物信息学领域的研究人员中使用。
translated by 谷歌翻译
心血管疾病(CVD)是一组心脏和血管疾病,是对人类健康最严重的危险之一,此类患者的数量仍在增长。早期,准确的检测在成功治疗和干预中起着关键作用。心电图(ECG)是识别各种心血管异常的金标准。在临床实践和当前大多数研究中,主要使用标准的12铅ECG。但是,使用较少的铅可以使ECG更加普遍,因为可以通过便携式或可穿戴设备来方便地记录它。在这项研究中,我们开发了一种新颖的深度学习系统,以仅使用三个ECG铅来准确识别多个心血管异常。
translated by 谷歌翻译
深度学习(DL)模型为各种医学成像基准挑战提供了最先进的性能,包括脑肿瘤细分(BRATS)挑战。然而,局灶性病理多隔室分割(例如,肿瘤和病变子区)的任务特别具有挑战性,并且潜在的错误阻碍DL模型转化为临床工作流程。量化不确定形式的DL模型预测的可靠性,可以实现最不确定的地区的临床审查,从而建立信任并铺平临床翻译。最近,已经引入了许多不确定性估计方法,用于DL医学图像分割任务。开发指标评估和比较不确定性措施的表现将有助于最终用户制定更明智的决策。在本研究中,我们探索并评估在Brats 2019-2020任务期间开发的公制,以对不确定量化量化(Qu-Brats),并旨在评估和排列脑肿瘤多隔室分割的不确定性估计。该公制(1)奖励不确定性估计,对正确断言产生高置信度,以及在不正确的断言处分配低置信水平的估计数,(2)惩罚导致更高百分比的无关正确断言百分比的不确定性措施。我们进一步基准测试由14个独立参与的Qu-Brats 2020的分割不确定性,所有这些都参与了主要的Brats细分任务。总体而言,我们的研究结果证实了不确定性估计提供了分割算法的重要性和互补价值,因此突出了医学图像分析中不确定性量化的需求。我们的评估代码在HTTPS://github.com/ragmeh11/qu-brats公开提供。
translated by 谷歌翻译
在神经形态计算中,人工突触提供了一种基于来自神经元的输入来设置的多重导电状态,类似于大脑。可能需要超出多重权重的突触的附加属性,并且可以取决于应用程序,需要需要从相同材料生成不同的突触行为。这里,我们基于使用磁隧道结和磁畴壁的磁性材料测量人造突触。通过在单个磁隧道结下面的畴壁轨道中制造光刻槽口,我们实现了4-5个稳定的电阻状态,可以使用自旋轨道扭矩电气可重复控制。我们分析几何形状对突触行为的影响,表明梯形装置具有高可控性的不对称性重量,而直线装置具有较高的随机性,但具有稳定的电阻水平。设备数据被输入到神经形态计算模拟器中以显示特定于应用程序突触函数的有用性。实施应用于流式的时尚 - MNIST数据的人工神经网络,我们表明梯形磁突出可以用作高效在线学习的元塑功能。为CiFar-100图像识别实施卷积神经网络,我们表明直流突触由于其电阻水平的稳定性而达到近乎理想的推理精度。这项工作显示多重磁突触是神经形态计算的可行技术,并为新兴人工突触技术提供设计指南。
translated by 谷歌翻译
异常气道扩张,称为牵引支气管扩张,是特发性肺纤维化(IPF)的典型特征。体积计算断层扫描(CT)成像捕获IPF中逐渐变细的丢失。我们假设气道异常的自动化量化可以提供IPF疾病程度和严重程度的估算。我们提出了一种自动化计算管道,系统地将气道树木从基于深度学习的气道分割中划分到其裂片和世代分支,从而从胸部CT获得气道结构措施。重要的是,透气阻止通过厚波传播的杂散气道分支的发生,并通过图表搜索去除气道树中的环,克服现有气道骨架算法的限制。在14名健康参与者和14名IPF患者之间比较了透气段(跨空间)和透气曲线曲线之间的逐渐变化。 IPF患者中,Airway interberering显着降低,与健康对照相比,Airway曲线曲调显着增加。差异在下叶中最大标记,符合IPF相关损伤的典型分布。透气是一种开源管道,避免了现有的气道定量算法的限制,并具有临床解释性。自动化气道测量可能具有作为IPF严重程度和疾病程度的新型成像生物标志物。
translated by 谷歌翻译
神经记录的进展现在在前所未有的细节中研究神经活动的机会。潜在的变量模型(LVMS)是用于分析各种神经系统和行为的丰富活动的有希望的工具,因为LVM不依赖于活动与外部实验变量之间的已知关系。然而,目前缺乏标准化目前阻碍了对神经元群体活性的LVM进行的进展,导致采用临时方式进行和比较方法。为协调这些建模工作,我们为神经人群活动的潜在变量建模介绍了基准套件。我们从认知,感官和机动领域策划了四种神经尖峰活动的数据集,以促进适用于这些地区各地的各种活动的模型。我们将无监督的评估视为用于评估数据集的模型的共同框架,并应用几个显示基准多样性的基线。我们通过评估释放此基准。 http://neurallatents.github.io.
translated by 谷歌翻译